Career Press Suppliers
Career Press Suppliers

Choose Region for personal contact

GPC Y ASOCIADOS S.A.

Veléz Sarsfield 201640 Martinez

Buenos Aires

Tel.: +54 (9) 11 5993 8719

info@gpcasoc.com.ar

https://gpcasoc.com.ar/

Horne Technologies cc

PO Box 536

Betty's Bay, 7141

Tel.: +27 (0)76 563 2084

info@hornet.cc

www.hornetechnologies.co.za

Building of FAULHABER MINIMOTOR SA, Croglio, Switzerland

FAULHABER MINIMOTOR SA

Zona Artigianale 8, Madonna del Piano

6980 Croglio

Tel.: +41 (0)91 611 31 00

info@faulhaber.ch

Building of FAULHABER MICROMO LLC, Wien, Austria

FAULHABER MICROMO LLC

14881 Evergreen Avenue

Clearwater, FL 33762-3008

Tel.: +1 (727) 572 0131

marketing@micromo.com

www.faulhaberUSA.com

NRC Engineering & Precision Drives Co., Ltd.

17F., No. 890, Jingguo Rd., Luzhu Dist.

Taoyuan City 33858, Taiwan, R.O.C.

Tel.: +886 (0) 3-316-1838

info@nrc.com.tw

www.nrc-precidrives.com

EDEL Teknoloji Sistemleri Sanayi ve Ticaret Ltd.Şti

Folkart TowersAdalet Mah.Manas Blv. No:47B/2809

35530 Bayraklı/İzmir

Tel.: + 90 232 215 08 91

info@edelteknoloji.com

www.edelteknoloji.com

Building of FAULHABER Asia Pacific Pte Ltd., Singapore

FAULHABER Asia Pacific Pte Ltd.

Blk 67 Ubi Road 1, #06-07 Oxley Bizhub

Singapore 408730

Tel.: +65 6562 8270

info@faulhaber.com.sg

Compotech Provider AP

Gustavslundsvägen 145, 4 tr

167 51 Bromma

Tel.: +46 (0) 8 441 58 00

info@compotech.se

www.compotech.se

MICROPRIVOD Ltd.

56 (bldg. 32), Shosse Enthusiastov

111123 Moscow

Tel.: +7 495 2214 052

info@microprivod.ru

www.microprivod.ru

Building of FAULHABER Polska sp. z o.o., Poznan, Poland

FAULHABER Polska sp. z o.o.

Ul. Górki 7

60-204 Poznan

Tel.: +48 61 278 72 53

info@faulhaber.pl

FAULHABER Malaysia Sdn Bhd

1A-2-01 & 02 · One Precinct · Lengkok Mayang Pasir

11950 Bayan Baru · Penang · Malaysia

Tel.: +60 4 619 2570

info@faulhaber.my

Swiss Amiet Co., Ltd.

W-903, SK V1 Center, 11 Dangsan-ro 41-g

Yeongdeungpo-gu,07217, Seoul

Tel.: +82 (0) 2 783 4774

info@swissamiet.com

www.swissamiet.com

Shinkoh Electronics Co., Ltd.

Tokyo Sales Office, Motor Sales Division8F, REID-C OMORI building, 6-20-8

Minami-oi, Shinagawa-ku, Tokyo 140-0013

Tel.: +81 (0) 3 6404 1003

motor-info@shinkoh-elecs.co.jp

www.shinkoh-faulhaber.jp

Building of FAULHABER Italia S.r.l., Lomazzo, Italy

FAULHABER Italia S.r.l.

Via Cavour 2

22074 Lomazzo CO

Tel.: +39 0236714708

info@faulhaber-italia.it

Inteltek Automation JV

S.No. 100/5, Ambegaon

Pune - 411046

Tel.: +91 (0) 20 39392150

info@inteltekindia.com

www.inteltekindia.com

Lewenstein Technologies Ltd.

1 Ha'arava St. Givat Shmuel

5400804 Israel

Tel.: +972 3 9780 800

info@l-tech.co.il

www.l-tech.co.il

Electro Mechanical Systems Ltd.

Eros House, Calleva Industrial Park, Aldermaston

Reading, RG7 8LN

Tel.: +44 (0) 118 9817 391

info@ems-ltd.com

www.ems-limited.co.uk

Building of FAULHABER France SAS, Montigny-le-Bretonneux, France

FAULHABER France SAS

Parc d’activités du Pas du Lac2, Rue Michaël Faraday

78180 Montigny-le-Bretonneux

Tel.: +33 (0) 1 30 80 45 00

info@faulhaber-france.fr

www.faulhaber.com

ELMEQ Motor

Passeig Ferrocarrils Catalans 178

Cornellà de Llobregat 08940 (Barcelona)

Tel.: +34 93 422 70 33

marketing@elmeq.es

www.elmeq.es

MOVETEC OY

Suokalliontie 9

01740 Vantaa

Tel.: +358 (0) 9 5259 230

info@movetec.fi

www.movetec.fi

Routech s.r.o.

Dr. Milady Horákové 185/66

460 06 Liberec

Tel.: +420 489 202 971

info@routech.cz

www.routech.cz

Compower ApS

Marielundvej 29

2730 Herlev

Tel.: +45 (0) 44 92 66 20

info@compower.dk

www.compower.dk

Marte Científica e Instrumentação Industrial Ltda

Av Fco Andrade Ribeiro 430

37540-000 Santa Rita do Sapucai, MG

Tel.: +55 (11) 3411 4500

motores@marte.com.br

www.marte.com.br

Building of FAULHABER Drive System Technology (Taicang) Co., Ltd.,Taicang, China

FAULHABER Drive System Technology (Taicang) Co., Ltd.

Eastern Block, Incubator Building, No. 6 Beijing Road West

Taicang 215400, Jiangsu Province

Tel.: +86 (0) 512 5337 2626

info@faulhaber.cn

Building of FAULHABER Benelux B.V., Eindhoven, Netherlands

FAULHABER Benelux B.V.

High Tech Campus 9

5656 AE Eindhoven

Tel.: +31 (0) 40 85155-40

info@faulhaber.nl

Building of FAULHABER Austria GmbH, Wien, Austria

FAULHABER Austria GmbH

Modecenterstraße 22/C89

1030 Wien

Tel.: +43 1 7963149-0

info@faulhaber-austria.at

ERNTEC Pty. Ltd.

15 Koornang Road

Scoresby, VIC 3179

Tel.: +61 3 9756 4000

Fax: +61 3 9753 4000

sales@erntec.net

www.erntec.net

Building of Dr. Fritz Faulhaber GmbH & Co. KG, Schönaich, Germany

Headquarter

DR. FRITZ FAULHABER GMBH & CO. KG

Faulhaberstraße 1

71101 Schönaich

Tel.: +49 7031 638 0

Fax: +49 7031 638 100

info@faulhaber.de

www.faulhaber.com

We are sorry

FAULHABER is currently not represented in the selected country.

Please contact us with your request at

Info@faulhaber.com

Jan-Christopher Mohr

Area Sales Manager

Tel.: +49 (7031) 638 158

jan-christopher.mohr@faulhaber.de

Michael Schütte

Area Sales Manager

Tel.: +49 (7031) 638 456

michael.schuette@faulhaber.de

Daniel Brönnimann

Area Sales Manager

Tel.: +41 (0) 79 570 0814

daniel.broennimann@faulhaber.ch

Rolf Leitner

Regional Sales Manager

Tel.: +41 (0) 79 422 3348

rolf.leitner@faulhaber.ch

Rafael Steinemann

Area Sales Manager

Tel.: +41 (0) 79 932 1645

rafael.steinemann@faulhaber.ch

Linear motors for precise movement of the robots and in the lasers

Wafers of sand

The raw material for chip manufacture could hardly be simpler: sand, quartz sand to be precise. The sand is first melted, and other constituent parts are separated from the main component, silicon. A so-called seed crystal from the same material initiates crystal growth in the liquid mass. Cylindrical rods with homogeneous structure are created. Discs about two millimetres thick are cut off from these: the raw wafers. After some smoothing and polishing, the blanks are coated with a photosensitive lacquer. The conductor paths, the thickness of which in modern chips is in the nanometre range, are created with a photolithographic process and subsequent etching of the material.

Linear motors for precise movement of the robots and in the lasers
Over 100,000 components per hour.
Linear motors for precise movement of the robots and in the lasers
Automatic PCB assembly using the pick & place method
Linear motors for precise movement of the robots and in the lasers

The complex structures, which connect millions of transistors on a chip to form an integrated circuit, are thereby created. Each unit is exposed up to thirty times with different photomasks. The many dozens of units on the wafer must be exactly aligned with those from the previously performed exposure. In this multi-stage process, the chip structures then appear on the round disc, which is similar in appearance to a wafer and the source of its name.

Robots move the wafers during all steps and guide them to the various process steps. The blanks are highly sensitive and must not bump into anything anywhere in spite of what are usually constrained spaces in the systems. In order for error-free structures to be created, their alignment must be extremely precise. The same holds for the optical components of the lasers in the photolithographic systems. Ensuring the precise movement of the components with reliable reproducibility in the robots and in the lasers are drives from FAULHABER, such as DC, stepper or piezo motors.

Linear motors for precise movement of the robots and in the lasers
Optical final inspection of a typical silicon wafer

Wire and synthetic resin

After the structures in the crystalline silicon have reached their final form, the individual chip blanks are cut from the wafers. These now receive their electrical connections (pins) in the form of fine wires made of aluminium or gold. They are unwound from rolls, a process that is, of course, also fully automatic. A special machine is responsible for this production step, the so-called wire bonding. It guides the wire end to the desired location, unwinds and cuts the required quantity and performs the soldering.

The chips are then enclosed by a protective shell, usually made from black synthetic resin. The process is similar to plastic injection moulding only that here very high precision is again required. The quantity of synthetic resin must be precisely dosed in order to effectively protect the circuit yet also ensure that nothing protrudes that could inhibit installation or function. Dosing is therefore performed by a motorised unit: the usually black synthetic resin passes through a spindle, the forward motion of which transports it toward the injection mould. After travelling an exactly measured path – in the millimetre range – the motor switches to reverse so that a precisely defined quantity of resin can be released and enter the mould. Once this process has been completed, the circuits have their characteristic appearance: the chip is now finished and is tested in the so-called test handler.

In this machine, a pick-and-place robot is responsible for transporting and placing the chips in the testing devices. Since parts are processed here that are no more than a few square centimetres in size, the dimensions of the system parts are also correspondingly delicate. The motors for their movement must be extremely compact but also be able to deliver very high acceleration values. The same applies for the wire bonding mentioned above. In both cases, the motors must perform their work with the utmost precision. Because the requirements are so high, motors from FAULHABER, such as the BX4 series with integrated Motion Controller or the portfolio of linear DC-servomotors, are used in many machines in this process area.

Linear motors for precise movement of the robots and in the lasers
Packaging of tested parts in carrier tape

Rapid assembly and needle test

The tested chips are usually packed in plastic belts and are then transported to the next stage in microelectronic manufacturing: to the assembly of the PCBs. You are no doubt familiar with these usually green plastic boards with chips, various other electronic components, copper conductive pathways and shiny, silver-coloured solder points – after all, we encounter them literally everywhere. Together with the components that hold and connect them, they form the small or large computer units that are responsible for flawless function not only in computers and smartphones but also in every car, in every household appliance, in every machine and in countless other products. Mass production prevails here as well: countless components are mounted on PCBs every day.

This work is performed by automatic placement machines. The belts with the components are fed to the mounting stations on rollers. Small pockets in the belt hold the components, a perforation at the edge of the belt enables precise transport. The belt is unrolled so that the placement head can always pick up one component. This last step is generally performed under negative pressure: the component is drawn in and held in the same manner. The head then moves to the location on the PCB at which the appropriate openings for the connections of the chip or other component are located. It places the chips on the openings; later they are soldered to the board.

It is easy to imagine how sensitive the hair-thin connections are. Any misplacement, even a faction of a millimetre, would bend and, thus, destroy them. Here, too: precision has top priority. At the same time, a large throughput is required for the massive quantities. Some machines manage over 100,000 components per hour. The bare eye sees only the shadow of the tremendously rapid movement here. The demands on the motors that move the conveyor units and the mounting heads are similar to those in the other areas of microelectronic production.

The subsequent quality inspection must also be extremely fast, as each individual PCB is thoroughly tested. The electrical conductivity of the connections provides information about the proper function of the circuits. To measure it, extremely small needles are guided to individual – two or more at a time – connections and placed under voltage. This is repeated for each part until all conductive pathways have been checked over. This process cannot be envisioned as a leisurely testing operation, however: the boards are often produced by the million. The fully automatic testing machines must therefore be able to handle a large throughput. The movement of the needles, for example, is so fast that it can only be followed in super slow motion.

Linear DC-Servomotors
High dynamics
Excellent force to volume ratio
No residual force present
Non-magnetic metal housing
Compact and robust construction
No lubrication required
Simple installation and configuration
Details

Recommended contents

Here you will find external YouTube contents for the article. Click to watch.

I consent to being shown external contents. I am aware that personal data may be shared with third-party platforms. For more information, refer to our privacy policy.

After filling out the form you will get access to our entire webinar library for a year.

* Required field

Many thanks for your interest in our product range!

You will shortly receive an email with a confirmation link. Click the link to complete the registration process. You will then be able to access the requested content.

Please contact us if you have any questions.