Career Press Suppliers
Career Press Suppliers

Choose Region for personal contact


Veléz Sarsfield 201640 Martinez

Buenos Aires

Tel.: +54 (9) 11 5993 8719

Horne Technologies cc

PO Box 536

Betty's Bay, 7141

Tel.: +27 (0)76 563 2084

Building of FAULHABER MINIMOTOR SA, Croglio, Switzerland


Zona Artigianale 8, Madonna del Piano

6980 Croglio

Tel.: +41 (0)91 611 31 00

Building of FAULHABER MICROMO LLC, Wien, Austria


14881 Evergreen Avenue

Clearwater, FL 33762-3008

Tel.: +1 (727) 572 0131

NRC Engineering & Precision Drives Co., Ltd.

17F., No. 890, Jingguo Rd., Luzhu Dist.

Taoyuan City 33858, Taiwan, R.O.C.

Tel.: +886 (0) 3-316-1838

EDEL Teknoloji Sistemleri Sanayi ve Ticaret Ltd.Şti

Folkart TowersAdalet Mah.Manas Blv. No:47B/2809

35530 Bayraklı/İzmir

Tel.: + 90 232 215 08 91

Building of FAULHABER Asia Pacific Pte Ltd., Singapore

FAULHABER Asia Pacific Pte Ltd.

Blk 67 Ubi Road 1, #06-07 Oxley Bizhub

Singapore 408730

Tel.: +65 6562 8270

Compotech Provider AP

Gustavslundsvägen 145, 4 tr

167 51 Bromma

Tel.: +46 (0) 8 441 58 00


56 (bldg. 32), Shosse Enthusiastov

111123 Moscow

Tel.: +7 495 2214 052

Building of FAULHABER Polska sp. z o.o., Poznan, Poland

FAULHABER Polska sp. z o.o.

Ul. Górki 7

60-204 Poznan

Tel.: +48 61 278 72 53

FAULHABER Malaysia Sdn Bhd

1A-2-01 & 02 · One Precinct · Lengkok Mayang Pasir

11950 Bayan Baru · Penang · Malaysia

Tel.: +60 4 619 2570

Swiss Amiet Co., Ltd.

W-903, SK V1 Center, 11 Dangsan-ro 41-g

Yeongdeungpo-gu,07217, Seoul

Tel.: +82 (0) 2 783 4774

Shinkoh Electronics Co., Ltd.

Tokyo Sales Office, Motor Sales Division8F, REID-C OMORI building, 6-20-8

Minami-oi, Shinagawa-ku, Tokyo 140-0013

Tel.: +81 (0) 3 6404 1003

Building of FAULHABER Italia S.r.l., Lomazzo, Italy

FAULHABER Italia S.r.l.

Via Cavour 2

22074 Lomazzo CO

Tel.: +39 0236714708

Inteltek Automation JV

S.No. 100/5, Ambegaon

Pune - 411046

Tel.: +91 (0) 20 39392150

Lewenstein Technologies Ltd.

1 Ha'arava St. Givat Shmuel

5400804 Israel

Tel.: +972 3 9780 800

Electro Mechanical Systems Ltd.

Eros House, Calleva Industrial Park, Aldermaston

Reading, RG7 8LN

Tel.: +44 (0) 118 9817 391

Building of FAULHABER France SAS, Montigny-le-Bretonneux, France


Parc d’activités du Pas du Lac2, Rue Michaël Faraday

78180 Montigny-le-Bretonneux

Tel.: +33 (0) 1 30 80 45 00


Passeig Ferrocarrils Catalans 178

Cornellà de Llobregat 08940 (Barcelona)

Tel.: +34 93 422 70 33


Suokalliontie 9

01740 Vantaa

Tel.: +358 (0) 9 5259 230

Routech s.r.o.

Dr. Milady Horákové 185/66

460 06 Liberec

Tel.: +420 489 202 971

Compower ApS

Marielundvej 29

2730 Herlev

Tel.: +45 (0) 44 92 66 20

Marte Científica e Instrumentação Industrial Ltda

Av Fco Andrade Ribeiro 430

37540-000 Santa Rita do Sapucai, MG

Tel.: +55 (11) 3411 4500

Building of FAULHABER Drive System Technology (Taicang) Co., Ltd.,Taicang, China

FAULHABER Drive System Technology (Taicang) Co., Ltd.

Eastern Block, Incubator Building, No. 6 Beijing Road West

Taicang 215400, Jiangsu Province

Tel.: +86 (0) 512 5337 2626

Building of FAULHABER Benelux B.V., Eindhoven, Netherlands


High Tech Campus 9

5656 AE Eindhoven

Tel.: +31 (0) 40 85155-40

Building of FAULHABER Austria GmbH, Wien, Austria


Modecenterstraße 22/C89

1030 Wien

Tel.: +43 1 7963149-0

ERNTEC Pty. Ltd.

15 Koornang Road

Scoresby, VIC 3179

Tel.: +61 3 9756 4000

Fax: +61 3 9753 4000

Building of Dr. Fritz Faulhaber GmbH & Co. KG, Schönaich, Germany



Faulhaberstraße 1

71101 Schönaich

Tel.: +49 7031 638 0

Fax: +49 7031 638 100

We are sorry

FAULHABER is currently not represented in the selected country.

Please contact us with your request at

Jan-Christopher Mohr

Area Sales Manager

Tel.: +49 (7031) 638 158

Michael Schütte

Area Sales Manager

Tel.: +49 (7031) 638 456

Daniel Brönnimann

Area Sales Manager

Tel.: +41 (0) 79 570 0814

Rolf Leitner

Regional Sales Manager

Tel.: +41 (0) 79 422 3348

Rafael Steinemann

Area Sales Manager

Tel.: +41 (0) 79 932 1645

Stepper Motor Technical Note: Microstepping Myths and Realities

The lure of Microstepping a two-phase stepper motor is compelling. Visions of Microstepping a 1,8-degree hybrid stepper motor with 256 microsteps per full step flash in your mind. The resolution of 51.200 microsteps per revolution entices you. You’re glad you don’t own stock in high-resolution encoder companies.


Torque vs. shaft position

FAULHABER Tutorial Stepper motor
Dotted line: Suitable response for precise microstepping positioning. Blue line: Distorted curves.

Where’s the catch?

The real compromise is that as you increase the number of microsteps per full step, the INCREMENTAL torque per microstep drops off drastically. Resolution increases. However, accuracy will suffer. Few stepper motors have a pure sinusoidal torque vs. shaft position and all have higher order harmonics that distort the curve and affect accuracy (see graph below). While microstepping drives have come a long way, they still only approximate a true sine wave.

It’s also critical to note that any load torque will result in a “magnetic backlash”, displacing the rotor from the intended position until sufficient torque is generated.

The actual expression for incremental torque for a single microstep is 1.:

FAULHABER Tutorial Stepper motor

The incremental torque for N microsteps is 2.:

FAULHABER Tutorial Stepper motor


μPFS = Number of Microsteps per Full Step [Integer]
= Number of Microsteps Taken [Integer]
       Less than or equal to μPFS
MHFS= Holding Torque-Full Step [Nm]
MINC = Incremental Torque per Microstep [Nm]
MN = Incremental Torque for N Microsteps [Nm]
         N Less than or equal to μPFS

Incremental Torque per Microstep/Full Step

FAULHABER Tutorial Stepper motor
Table 1 dramatically quantifies the significant impact of the incremental torque per microstep as a function of the number of microsteps per full step. A full step is considered one microstep per full step for Equations 1 and 2.

Incremental Torque per Microstep As the Number of Microsteps per Full Step Increase

FAULHABER Tutorial Stepper motor

What Does It Mean?

The consequence is that if the load torque plus the motor’s friction and detent torque is greater than the incremental torque of a microstep, successive microsteps will have to be realized until the accumulated torque exceeds the load torque plus the motor’s friction and detent torque. Simply stated, taking a microstep does not mean the motor will actually move. If reversing direction is desired, a significant number of microsteps may be needed before movement occurs. That’s because the motor shaft torque must be decremented from whatever positive value it has to a negative value that will have sufficient torque to cause motion in the negative direction.

Accuracy vs. Resolution

What if the motor is not loaded? Thinking of using microstepping for some type of pointing or inertial positioning? Well, the stepper motor still has friction torque due to its bearings and it has a detent torque (in addition to other harmonic distortions). You’ll have to “wind up” enough incremental torque to overcome the bearing friction. Even more disruptive than the bearing friction is the detent torque, which is typically 5 to 20% of the holding torque. Sometimes, the detent torque is adding to the overall torque generation. However, it can also subtract from the powered torque generation. In any case, it wrecks havoc with your overall accuracy. Indeed, some manufacturers fabricate “microstepping” versions of their motors. With standard motor constructions, the efforts typically are to reduce the detent torque. This can be at the expense of holding torque in order, to make the torque vs. rotor position closer to a sine wave, and it can also serve to improve linearity of torque vs. current. These efforts reduce but not eliminate the compromises associated with microstepping in regards to accuracy. Only specific magnetic designs (like the Faulhaber DM1220, or DM52100R) are intrinsically detent torque “free”. How about using a lookup table to “correct” for the inaccuracies in the motor and microstepping drive? The problem is that if the load torque changes from when the lookup table was made, the results can be worse than if you had not utilized a “calibrated” table.

Why Microstep?

There are still compelling reasons other than high resolution for microstepping. They include:

  • reduced Mechanical Noise.
  • gentler Actuation Mechanically
  • reduces Resonances Problems

In summary, although Microstepping gives the designer more resolution, improved accuracy is not realized. Reduction in mechanical and electromagnetically induced noise is, however, a real benefit. The mechanical transmission of torque will also be much gentler and resonance problems reduced. This gives better confidence in maintaining synchronization of the open loop system and less wear and tear on the mechanical transmission system. In fact, taking an infinite number of microsteps per full step results in two-phase synchronous permanent magnet ac motor operation.

Recommended contents

Here you will find external YouTube contents for the article. Click to watch.

I consent to being shown external contents. I am aware that personal data may be shared with third-party platforms. For more information, refer to our privacy policy.

After filling out the form you will get access to our entire webinar library for a year.

* Required field

Many thanks for your interest in our product range!

You will shortly receive an email with a confirmation link. Click the link to complete the registration process. You will then be able to access the requested content.

Please contact us if you have any questions.