Lavora con noi Stampa Acquisti
Lavora con noi Stampa Acquisti

Selezionare regione per referente personale

GPC Y ASOCIADOS S.A.

Veléz Sarsfield 201640 Martinez

Buenos Aires

Tel.: +54 (9) 11 5993 8719

info@gpcasoc.com.ar

Horne Technologies cc

PO Box 536

Betty's Bay, 7141

Tel.: +27 (0)76 563 2084

info@hornet.cc

www.hornetechnologies.co.za

FAULHABER MINIMOTOR SA

Zona Artigianale 8, Madonna del Piano

6980 Croglio

Tel.: +41 (0)91 611 31 00

info@faulhaber.ch

Edificio di FAULHABER MICROMO LLC, Wien, Austria

FAULHABER MICROMO LLC

14881 Evergreen Avenue

Clearwater, FL 33762-3008

Tel.: +1 (727) 572 0131

marketing@micromo.com

www.faulhaberUSA.com

NRC Engineering & Precision Drives Co., Ltd.

17F., No. 890, Jingguo Rd., Luzhu Dist.

Taoyuan City 33858, Taiwan, R.O.C.

Tel.: +886 (0) 3-316-1838

info@nrc.com.tw

www.nrc-precidrives.com

EDEL Teknoloji Sistemleri Sanayi ve Ticaret Ltd.Şti

Folkart TowersAdalet Mah.Manas Blv. No:47B/2809

35530 Bayraklı/İzmir

Tel.: + 90 232 215 08 91

info@edelteknoloji.com

www.edelteknoloji.com

FAULHABER Asia Pacific Pte Ltd.

Blk 67 Ubi Road 1, #06-07 Oxley Bizhub

Singapore 408730

Tel.: +65 6562 8270

info@faulhaber.com.sg

Compotech Provider AP

Gustavslundsvägen 145, 4 tr

167 51 Bromma

Tel.: +46 (0) 8 441 58 00

info@compotech.se

www.compotech.se

MICROPRIVOD Ltd.

56 (bldg. 32), Shosse Enthusiastov

111123 Moscow

Tel.: +7 495 2214 052

info@microprivod.ru

www.microprivod.ru

FAULHABER Polska sp. z o.o.

Ul. Górki 7

60-204 Poznan

Tel.: +48 61 278 72 53

info@faulhaber.pl

Staubo Elektro-Maskin a.s.

Bjørnerudveien 12C

1266 Oslo

Tel.: +47 22 75 35 00

post@staubo.no

www.staubo.no

FAULHABER Malaysia Sdn Bhd

1A-2-01 & 02 · One Precinct · Lengkok Mayang Pasir

11950 Bayan Baru · Penang · Malaysia

Tel.: +60 4 619 2570

info@faulhaber.my

Swiss Amiet Co., Ltd.

W-903, SK V1 Center, 11 Dangsan-ro 41-g

Yeongdeungpo-gu,07217, Seoul

Tel.: +82 (0) 2 783 4774

info@swissamiet.com

www.swissamiet.com

Shinkoh Electronics Co., Ltd.

Tokyo Sales Office, Motor Sales Division8F, REID-C OMORI building, 6-20-8

Minami-oi, Shinagawa-ku, Tokyo 140-0013

Tel.: +81 (0) 3 6404 1003

motor-info@shinkoh-elecs.co.jp

www.shinkoh-faulhaber.jp

FAULHABER Italia S.r.l.

Via Cavour 2

22074 Lomazzo CO

Tel.: +39 0236714708

info@faulhaber-italia.it

Inteltek Automation JV

S.No. 100/5, Ambegaon

Pune - 411046

Tel.: +91 (0) 20 39392150

info@inteltekindia.com

www.inteltekindia.com

Lewenstein Technologies Ltd.

1 Ha'arava St. Givat Shmuel

5400804 Israel

Tel.: +972 3 9780 800

info@l-tech.co.il

www.l-tech.co.il

Electro Mechanical Systems Ltd.

Eros House, Calleva Industrial Park, Aldermaston

Reading, RG7 8LN

Tel.: +44 (0) 118 9817 391

info@ems-ltd.com

www.ems-limited.co.uk

FAULHABER France SAS

Parc d’activités du Pas du Lac2, Rue Michaël Faraday

78180 Montigny-le-Bretonneux

Tel.: +33 (0) 1 30 80 45 00

info@faulhaber-france.fr

www.faulhaber.com

ELMEQ Motor

Passeig Ferrocarrils Catalans 178

Cornellà de Llobregat 08940 (Barcelona)

Tel.: +34 93 422 70 33

marketing@elmeq.es

www.elmeq.es

MOVETEC OY

Suokalliontie 9

01740 Vantaa

Tel.: +358 (0) 9 5259 230

info@movetec.fi

www.movetec.fi

Routech s.r.o.

Dr. Milady Horákové 185/66

460 06 Liberec

Tel.: +420 489 202 971

info@routech.cz

www.routech.cz

Compower ApS

Marielundvej 29

2730 Herlev

Tel.: +45 (0) 44 92 66 20

info@compower.dk

www.compower.dk

Marte Científica e Instrumentação Industrial Ltda

Av Fco Andrade Ribeiro 430

37540-000 Santa Rita do Sapucai, MG

Tel.: +55 (11) 3411 4500

motores@marte.com.br

www.marte.com.br

FAULHABER Drive System Technology (Taicang) Co., Ltd.

Eastern Block, Incubator Building, No. 6 Beijing Road West

Taicang 215400, Jiangsu Province

Tel.: +86 (0) 512 5337 2626

info@faulhaber.cn

FAULHABER Benelux B.V.

High Tech Campus 9

5656 AE Eindhoven

Tel.: +31 (0) 40 85155-40

info@faulhaber.nl

FAULHABER Benelux B.V.

High Tech Campus 9

5656 AE Eindhoven

Tel.: +31 (0) 40 85155-40

info@faulhaber.be

FAULHABER Austria GmbH

Modecenterstraße 22/C89

1030 Wien

Tel.: +43 1 7963149-0

info@faulhaber-austria.at

ERNTEC Pty. Ltd.

15 Koornang Road

Scoresby, VIC 3179

Tel.: +61 (0) 3 9756 4000

sales@erntec.com.au

www.erntec.net

Headquarter

DR. FRITZ FAULHABER GMBH & CO. KG

Daimlerstr. 23

71101 Schönaich

Tel.: +49 7031 638 0

Fax: +49 7031 638 100

info@faulhaber.de

www.faulhaber.com

Jan-Christopher Mohr

Area Sales Manager

Tel.: +49 (7031) 638 158

jan-christopher.mohr@faulhaber.de

Daniel Brönnimann

Area Sales Manager

Tel.: +41 (0) 79 570 0814

daniel.broennimann@faulhaber.ch

Rolf Leitner

Regional Sales Manager

Tel.: +41 (0) 79 422 3348

rolf.leitner@faulhaber.ch

Michael Schütte

Area Sales Manager

Tel.: +49 (7031) 638 456

michael.schuette@faulhaber.de

Beijing Office

East 10H3 Wu Mart Huike Mansion Building, No. 158 W. 4th Ring Road North

Haidian District, Beijing 100097

Tel.: +86 (0)10 5335 9353

info@faulhaber.cn

Guangzhou Office

Room 1415, No. 5 Fuchang Road

Haizhu District, Guangzhou, 510240, Guangdong Province

Tel.: +86 (0) 20 3424 8332

Fax: +86 (0) 20 3424 8332

info@faulhaber.cn

Xi‘an Office

Room A-509, No. 318 Yanta Road South

Qujiang New District, Xi’an 710061, Shaanxi Province

Tel.: +86 (0) 29 8521 2778

Fax: +86 (0) 29 8521 2778

info@faulhaber.cn

Hong Kong Office

Unit 4, 19/F, Ricky Centre, 36 Chong Yip Street

Kwun Tong, Kowloon

Tel.: +852 3520 2078

Fax: +852 3914 7452

info@faulhaber.cn

Motori CC nella robotica Microposizionamento Hexapod con la massima manovrabilità e precisione

Drawing on over 30 years’ experience, PI (Physik Instrumente) has made a name for itself as a supplier of high-performance micropositioning systems. The product highlights include pioneering six-axis parallel kinematics micro-robots which are suitable for a variety of applications.
These specialist fields of application range from handling systems in electronics manufacture and product inspection in precision machine-tool production to medical technology and optical systems, e.g. space telescopes and satellite reception systems.

"Flight simulator" principle

Hexapod systems are based on six high-resolution actuators that control a single platform. This is the same principle as that applied in flight simulators, only much more accurate. Instead of hydraulic drives, hexapods are powered by high-precision drive spindles and precisely controllable electrical motors. Owing to the reduced mass of the moving platform, the settling time for positioning is considerably less than with conventional, stackable multiple-axis systems. The pivot, which can be freely defined using software functions, remains independent of movement, which is important in optical adjustments, for example.
The precise parallel kinematics micro-robots are provided in three basic versions for various applications. The M-850 is the ideal system for the full range of complex positioning tasks, where high loads of up to 200 kg in the vertical direction as well as an element of precision are of the utmost importance. Each axis can be positioned individually with a resolution of up to 0.005 µm. The M-840 parallel kinematics micro-robot has been developed for smaller loads and higher speeds. This allows loads of up to 10 kg to be positioned in any direction with a speed of up to 50 mm/s at micrometre accuracy. The most recent development, the M-824, works with "folded" drives and features a highly compact design due to the special arrangement of the drive and the spindle. One aspect that all three systems have in common is that they require drive technology tailored to the hexapod’s unique requirements. In particular, the drive components must be suitable for integration into the axes of the hexapods. In other words, the structural dimensions have to be as small as possible, but nevertheless be capable of supplying comparatively high power ratings of 3 to 19 Watt. In order to achieve the high positioning accuracy required, the drive systems must also work as backlash-free as possible over the lengthy operating period. Harsh environmental conditions also have to be taken into consideration, e.g. in outdoor applications. Micropositioning systems, for instance, are used in space telescopes and satellite reception systems installed in inhospitable mountain or desert regions.

Motori CC nella robotica Microposizionamento Hexapod con la massima manovrabilità e precisione
[Translate to Italian:] The drive systems used in hexapods have to withstand harsh environmental conditions, e.g. when being used in satellite reception systems and inhospitable mountainous regions or desert areas

Drives for hexapod micropositioning systems: small, robust and powerful

When it comes to challenging applications, FAULHABER’s standard range of DC precision motors is always primed for action. The classic bell-type armature motor with ironless rotor coil and precious metal commutation provides very favourable preconditions for such areas of application. The small, light-weight DC drives work reliably in adverse environmental conditions. They are ideally suited for ambient temperatures between – 30 °C and + 125 °C. With special design features, they are even able to deal with high levels of humidity of up to 98%. For PI, an important consideration in the selection of motors was the immediate and high torque start-up of the DC motors after a voltage is applied. This ensures direct reaction to the control signal. Thanks to the self-supporting copper coil, it is possible to construct particularly light motors with efficiency grades of 80 % and more.
Depending on the design and area of application, the hexapod micropositioning system combines DC motors with reduction gears. The low-play cylindrical gearing in an allmetal design is particularly conducive to uniform and low-noise operations. To avoid backlash, in most cases the gears are pre-tensioned. Motor and gears form a compact unit and are 60 mm long at a diameter of less than 25 mm. So even at rather tight installation ratios in the hexapod axes, the drive units can be easily integrated. Electrical connection is also particularly userfriendly. The DC geared motors can be controlled directly by PC cards without additional boosters. In some cases, however, manufacturers of hexapod micro-positioning systems have incorporated servo-boosters with inputs for pulse-width modulated signals, close to the motor in the basic board of the hexapods.

Motori CC nella robotica Microposizionamento Hexapod con la massima manovrabilità e precisione
[Translate to Italian:] Hexapod micropositioning systems are based on six high-resolution actuators that control a single platform

Position detection with magnetic pulse generators

For precise positioning, it is ab-solutely essential that one knows the actual position of the motors. Once again, FAULHABER came up with an effective solution. With the DC micromotors built into the hexapods, the current positions are recorded with magnetic pulse generators supplying 512 pulses per rotation. Resolutions of up to 0.005 µm are produced by means of quadruple interpolation, depending on spindle pitch. The pulse generators consist of a multiple-pole, low-inertia permanent magnetic disk, which is in-corporated either on the motor shaft or directly into the rotor of the motor, depending on the type of unit deployed. Magnetic sensors record the changes in magnetic flux. The output includes two 90° phase-shifted incremental output signals, which are sub-sequently processed by the system control of the hexapods. The supply voltage for pulse generators and the DC micromotor as well as the output signals are connected via a ribbon cable by means of a plug.

In kinematics, one can basically distinguish between parallel and serial kinematics. In serial systems, each actuator focuses on its own positioning platform and is assigned to one axis. This approach allows simpler mechanical structures and control technology. However, as runout errors tend to add up with the "stacked" systems, the de-gree of precision achieved is lower than with parallel systems. With parallel kinematics, unlike serial kinematics, all actuators act directly on the same platform. Alongside improved accuracy, this has a number of benefits: lower inertia of masses and thus superior dynamics, no moving cable that generates friction losses, and a more compact structure. The control of such systems is, however, very demanding and requires much more expertise.

Parallel vs. serial kinematics

Motori CC nella robotica Microposizionamento Hexapod con la massima manovrabilità e precisione
Motori CC nella robotica Microposizionamento Hexapod con la massima manovrabilità e precisione

In kinematics, one can basically distinguish between parallel and serial kinematics. In serial systems, each actuator focuses on its own positioning platform and is assigned to one axis. This approach allows simpler mechanical structures and control technology. However, as runout errors tend to add up with the "stacked" systems, the degree of precision achieved is lower than with parallel systems. With parallel kinematics, unlike serial kinematics, all actuators act directly on the same platform. Alongside improved accuracy, this has a number of benefits: lower inertia of masses and thus superior dynamics, no moving cable that generates friction losses, and a more compact structure. The control of such systems is, however, very demanding and requires much more expertise.

Contenuti raccomandati

Qui troverete dei contenuti esterni di YouTube relativi all'articolo. Cliccateci sopra per guardarli.

Acconsento alla visione di contenuti esterni. Sono consapevole che i miei dati personali potrebbero essere condivisi con piattaforme di terzi. Per maggiori informazioni fare riferimento alla nostra Informativa privacy policy.

Modulo per la richiesta di contenuti ad accesso protetto

Personal Data

* Campi obbligatori

Grazie per l'interesse verso i nostri prodotti!

A breve riceverete un’e-mail con un link di conferma. Cliccando sul link completerete il processo di registrazione. Subito dopo potrete accedere ai contenuti richiesti.

Se avete domande non esitate a contattarci.