Lavora con noi Stampa Acquisti
Lavora con noi Stampa Acquisti

Selezionare regione per referente personale

GPC Y ASOCIADOS S.A.

Veléz Sarsfield 201640 Martinez

Buenos Aires

Tel.: +54 (9) 11 5993 8719

info@gpcasoc.com.ar

Horne Technologies cc

PO Box 536

Betty's Bay, 7141

Tel.: +27 (0)76 563 2084

info@hornet.cc

www.hornetechnologies.co.za

FAULHABER MINIMOTOR SA

Zona Artigianale 8, Madonna del Piano

6980 Croglio

Tel.: +41 (0)91 611 31 00

info@faulhaber.ch

Edificio di FAULHABER MICROMO LLC, Wien, Austria

FAULHABER MICROMO LLC

14881 Evergreen Avenue

Clearwater, FL 33762-3008

Tel.: +1 (727) 572 0131

marketing@micromo.com

www.faulhaberUSA.com

NRC Engineering & Precision Drives Co., Ltd.

17F., No. 890, Jingguo Rd., Luzhu Dist.

Taoyuan City 33858, Taiwan, R.O.C.

Tel.: +886 (0) 3-316-1838

info@nrc.com.tw

www.nrc-precidrives.com

EDEL Teknoloji Sistemleri Sanayi ve Ticaret Ltd.Şti

Folkart TowersAdalet Mah.Manas Blv. No:47B/2809

35530 Bayraklı/İzmir

Tel.: + 90 232 215 08 91

info@edelteknoloji.com

www.edelteknoloji.com

FAULHABER Asia Pacific Pte Ltd.

Blk 67 Ubi Road 1, #06-07 Oxley Bizhub

Singapore 408730

Tel.: +65 6562 8270

info@faulhaber.com.sg

Compotech Provider AP

Gustavslundsvägen 145, 4 tr

167 51 Bromma

Tel.: +46 (0) 8 441 58 00

info@compotech.se

www.compotech.se

MICROPRIVOD Ltd.

56 (bldg. 32), Shosse Enthusiastov

111123 Moscow

Tel.: +7 495 2214 052

info@microprivod.ru

www.microprivod.ru

FAULHABER Polska sp. z o.o.

Ul. Górki 7

60-204 Poznan

Tel.: +48 61 278 72 53

info@faulhaber.pl

Staubo Elektro-Maskin a.s.

Bjørnerudveien 12C

1266 Oslo

Tel.: +47 22 75 35 00

post@staubo.no

www.staubo.no

FAULHABER Malaysia Sdn Bhd

1A-2-01 & 02 · One Precinct · Lengkok Mayang Pasir

11950 Bayan Baru · Penang · Malaysia

Tel.: +60 4 619 2570

info@faulhaber.my

Swiss Amiet Co., Ltd.

W-903, SK V1 Center, 11 Dangsan-ro 41-g

Yeongdeungpo-gu,07217, Seoul

Tel.: +82 (0) 2 783 4774

info@swissamiet.com

www.swissamiet.com

Shinkoh Electronics Co., Ltd.

Tokyo Sales Office, Motor Sales Division8F, REID-C OMORI building, 6-20-8

Minami-oi, Shinagawa-ku, Tokyo 140-0013

Tel.: +81 (0) 3 6404 1003

motor-info@shinkoh-elecs.co.jp

www.shinkoh-faulhaber.jp

FAULHABER Italia S.r.l.

Via Cavour 2

22074 Lomazzo CO

Tel.: +39 0236714708

info@faulhaber-italia.it

Inteltek Automation JV

S.No. 100/5, Ambegaon

Pune - 411046

Tel.: +91 (0) 20 39392150

info@inteltekindia.com

www.inteltekindia.com

Lewenstein Technologies Ltd.

1 Ha'arava St. Givat Shmuel

5400804 Israel

Tel.: +972 3 9780 800

info@l-tech.co.il

www.l-tech.co.il

Electro Mechanical Systems Ltd.

Eros House, Calleva Industrial Park, Aldermaston

Reading, RG7 8LN

Tel.: +44 (0) 118 9817 391

info@ems-ltd.com

www.ems-limited.co.uk

FAULHABER France SAS

Parc d’activités du Pas du Lac2, Rue Michaël Faraday

78180 Montigny-le-Bretonneux

Tel.: +33 (0) 1 30 80 45 00

info@faulhaber-france.fr

www.faulhaber.com

ELMEQ Motor

Passeig Ferrocarrils Catalans 178

Cornellà de Llobregat 08940 (Barcelona)

Tel.: +34 93 422 70 33

marketing@elmeq.es

www.elmeq.es

MOVETEC OY

Suokalliontie 9

01740 Vantaa

Tel.: +358 (0) 9 5259 230

info@movetec.fi

www.movetec.fi

Routech s.r.o.

Dr. Milady Horákové 185/66

460 06 Liberec

Tel.: +420 489 202 971

info@routech.cz

www.routech.cz

Compower ApS

Marielundvej 29

2730 Herlev

Tel.: +45 (0) 44 92 66 20

info@compower.dk

www.compower.dk

Marte Científica e Instrumentação Industrial Ltda

Av Fco Andrade Ribeiro 430

37540-000 Santa Rita do Sapucai, MG

Tel.: +55 (11) 3411 4500

motores@marte.com.br

www.marte.com.br

FAULHABER Drive System Technology (Taicang) Co., Ltd.

Eastern Block, Incubator Building, No. 6 Beijing Road West

Taicang 215400, Jiangsu Province

Tel.: +86 (0) 512 5337 2626

info@faulhaber.cn

FAULHABER Benelux B.V.

High Tech Campus 9

5656 AE Eindhoven

Tel.: +31 (0) 40 85155-40

info@faulhaber.nl

FAULHABER Benelux B.V.

High Tech Campus 9

5656 AE Eindhoven

Tel.: +31 (0) 40 85155-40

info@faulhaber.be

FAULHABER Austria GmbH

Modecenterstraße 22/C89

1030 Wien

Tel.: +43 1 7963149-0

info@faulhaber-austria.at

ERNTEC Pty. Ltd.

15 Koornang Road

Scoresby, VIC 3179

Tel.: +61 (0) 3 9756 4000

sales@erntec.com.au

www.erntec.net

Headquarter

DR. FRITZ FAULHABER GMBH & CO. KG

Daimlerstr. 23

71101 Schönaich

Tel.: +49 7031 638 0

Fax: +49 7031 638 100

info@faulhaber.de

www.faulhaber.com

Jan-Christopher Mohr

Area Sales Manager

Tel.: +49 (7031) 638 158

jan-christopher.mohr@faulhaber.de

Daniel Brönnimann

Area Sales Manager

Tel.: +41 (0) 79 570 0814

daniel.broennimann@faulhaber.ch

Rolf Leitner

Regional Sales Manager

Tel.: +41 (0) 79 422 3348

rolf.leitner@faulhaber.ch

Michael Schütte

Area Sales Manager

Tel.: +49 (7031) 638 456

michael.schuette@faulhaber.de

Beijing Office

East 10H3 Wu Mart Huike Mansion Building, No. 158 W. 4th Ring Road North

Haidian District, Beijing 100097

Tel.: +86 (0)10 5335 9353

info@faulhaber.cn

Guangzhou Office

Room 1415, No. 5 Fuchang Road

Haizhu District, Guangzhou, 510240, Guangdong Province

Tel.: +86 (0) 20 3424 8332

Fax: +86 (0) 20 3424 8332

info@faulhaber.cn

Xi‘an Office

Room A-509, No. 318 Yanta Road South

Qujiang New District, Xi’an 710061, Shaanxi Province

Tel.: +86 (0) 29 8521 2778

Fax: +86 (0) 29 8521 2778

info@faulhaber.cn

Hong Kong Office

Unit 4, 19/F, Ricky Centre, 36 Chong Yip Street

Kwun Tong, Kowloon

Tel.: +852 3520 2078

Fax: +852 3914 7452

info@faulhaber.cn

Sistemi di azionamento per Aerospaziale missione Rosetta header

As is the case with asteroids, comets (or shooting stars) are considered to be the remnants of the genesis of our solar system. They are formed in the cold outer reaches. In proximity to the sun, the comet nuclei – which are usually just a few kilometres in diameter – are surrounded by a nebulous shroud, the so-called coma; this is what gives them their typical appearance. Comets have always fascinated mankind. In the antiquity, ancient Greeks and Romans thought them to be divine omens; in the Middle Ages, they were considered to be harbingers of fate. Now, European scientists have for the first time landed on a comet to observe and examine it close up and so to gain new insights into the origins of our solar system. An endeavour such as this places high demands on the technology that is employed, though. Consequently, the ballistically-propelled lander makes use of an entire series of compact drives, which must reliably fulfil their functions after the spaceflight of many years. For example, they must operate during the landing and while analyses are being performed on the surface of the comet.

Sistemi di azionamento per Aerospaziale missione Rosetta motori
[Translate to Italian:] The lander's legs are connected with the top part by way of a cardan joint in which three motors are integrated: two for both of the tilting axes and one for adjusting the brake force of the multi-plate clutches.
Sistemi di azionamento per Aerospaziale missione Rosetta arpione
[Translate to Italian:] Harpoon unit for secure anchoring on the surface of the comet

Philae touched down three times

Because of the low gravity of the celestial body, it is difficult find firm footing on the surface and to also ensure a secure stance during the entire operating period. Thus, under the auspices of the DLR (Deutsches Zentrums für Luft- und Raumfahrt; German Aerospace Center), the Max-Planck-Institut for Extraterrestrial Physics (MPE) developed a special anchor system for the probe: immediately after ground contact upon landing, two harpoons were to be shot by a propellant charge into the surface of the comet and lodge into it. Barbs were provided to prevent these anchor fittings from coming loose again. As each harpoon shot out, it would have pulled a cable out from a magazine. This cable would then be wound up on a drum until taut by means of a 1628 series brushless servomotor with a 16/7 planetary gearhead in order to secure the probe to the surface. At least that was the plan – unfortunately the harpoons were not fired, the rewinding mechanism was not used and Philae ended up touching down three times without anchoring to the comet. Nevertheless, the miniature laboratory was still able to begin its analyses as planned.

Sistemi di azionamento per Aerospaziale missione Rosetta arpione disegno
[Translate to Italian:] Structure of the harpoon anchor.

Landing gear and sample analysis

During the landing phase, other motors had further important tasks to perform: In order to transform the kinetic energy generated during the landing (approx. 50 J) into electrical energy and finally into heat using a spindle drive, a 3557 series bell-type armature motor was connected directly through an external resistor and operated as a generator. Additional drives from the 1224 series are used in the three-legged landing gear of the lander, e.g. in order to swivel or rotate the upper part of the lander by means of a cardan joint so that the solar panels can be optimally aligned. And, microdrives were also needed for taking the samples: The lander has a drill that feeds core samples into a small oven for pyrolysis. Small 1016 series motors with 10/1 planetary gearhead drive a cam via a worm drive, which feeds to a ceramic breech piece on the respective oven and simultaneously closes the electrical contacts for the oven heating element. The gas is routed through thin tubes in the oven latch to the scientific instruments for analysis. During its first scientific phase which lasted a total of 56 hours, the lander performed all of the planned scientific measurements on the comet surface. Philae successfully transmitted this data to the Lander Control Center and, furthermore, has moved its upper part so that it is better aligned with the sun. ESA and DLR already regard the mission as a complete success. Evaluation of all of the received data will take some time.

Sistemi di azionamento per Aerospaziale missione Rosetta disegno di sistema di riavvolgimento
[Translate to Italian:] Rewind system with miniature motor and spiral spring as flexible energy storage

Outer space and its demands

The demands that outer space place on these drives are high: every kilo of mass that is shot into space costs energy, i.e. fuel – hence money too. Therefore, small, light solutions are sought. At the same time, however, they must also be able to withstand the enormous vibration and acceleration forces during take-off, as well as the constant very-low temperatures and the many years of vacuum conditions prevailing in outer space.

Because the cost factor also plays a major role in all considerations when selecting components for space projects, the developers wanted to do without costly custom developments if at all possible. Accordingly, they first looked for series products which complied with as many of their specifications as possible. They found what they were looking for in the comprehensive drive systems product range from FAULHABER (refer to text box). Standard drive solutions they offered fulfilled all mechanical requirements. The special conditions in space could then be met by making comparably few modifications that entailed negligible additional costs.

Sistemi di azionamento per Aerospaziale missione Rosetta atterraggio
Sistemi di azionamento per Aerospaziale missione Rosetta atterraggio Philae

Tuning for standard drives

For example, a brushless DC servomotor with precision gearheads served as the initial motor for driving the anchor harpoon. Motor and gearhead together measure only 16 mm in diameter and 61 mm in length. Low gear play of less than 1° also allows for much more precise positioning. Thanks to their compact dimensions, the drive solutions could be easily integrated. Their low power requirements were also ideally suited to the application.

As was the case with the other drives used in the lander, their lubrication was also adapted to the conditions in space. Greases or oils are ineffective under these circumstances; they either solidify in the cold of outer space or vaporise in the vacuum. Solid lubricants offer a promising remedy to this. Graphite was rejected, though, because it only lubricates well if gases such as water vapour or nitrogen can be built up between the layers of graphite. These gases are lacking in a vacuum; that which is a solid lubricant on earth then acts more like chalk. Which is why it was decided to use molybdenum disulphide (MoS2) for the space mission, which also has a graphite-like layer structure. With it, the lubrication also functions in a vacuum and in the frigid temperatures of outer space, but also at temperatures of up to several hundred degrees Celsius. This solid lubricant was therefore applied to the surfaces of the special bearings to be lubricated and the standard gear wheels.

Sistemi di azionamento per Aerospaziale missione Rosetta Philae sequester

The gearhead housing had to also be made suitable for deployment in outer space. Deep temperatures of less than -100 °C and different materials can lead to thermal expansion problems with precision parts due to blockage. For this reason, the standard nickel-plated brass housing of the gearhead was replaced by a steel housing, which is matched to the thermal expansion rates of the steel gears. It was possible to manufacture the steel housing in FAULHABER's standard production facility. This in turn helped assure the precisely-fitting interchangeability. Thanks to the easily-assembled individual gearhead parts, the spaceworthy "reinforced" parts could then be easily put together. The modified standard drives prove their performance in space just as they already have in many other extreme applications, e.g. in the high vacuum of electron microscopes or in chip production.

video
FAULHABER SR

1016 ... SR

Commutazione metalli preziosi

Scheda tecnica (PDF) Dettagli prodotto
FAULHABER SR

1224 ... SR

Commutazione metalli preziosi

Scheda tecnica (PDF) Dettagli prodotto
Riduttori planetari

10/1

Scheda tecnica (PDF) Dettagli prodotto

Contenuti raccomandati

Qui troverete dei contenuti esterni di YouTube relativi all'articolo. Cliccateci sopra per guardarli.

Acconsento alla visione di contenuti esterni. Sono consapevole che i miei dati personali potrebbero essere condivisi con piattaforme di terzi. Per maggiori informazioni fare riferimento alla nostra Informativa privacy policy.

Modulo per la richiesta di contenuti ad accesso protetto

Personal Data

* Campi obbligatori

Grazie per l'interesse verso i nostri prodotti!

A breve riceverete un’e-mail con un link di conferma. Cliccando sul link completerete il processo di registrazione. Subito dopo potrete accedere ai contenuti richiesti.

Se avete domande non esitate a contattarci.