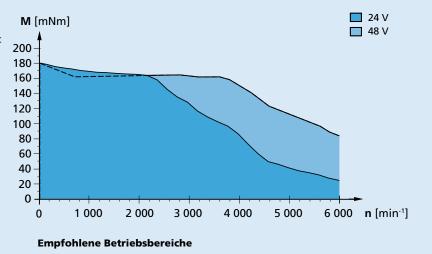
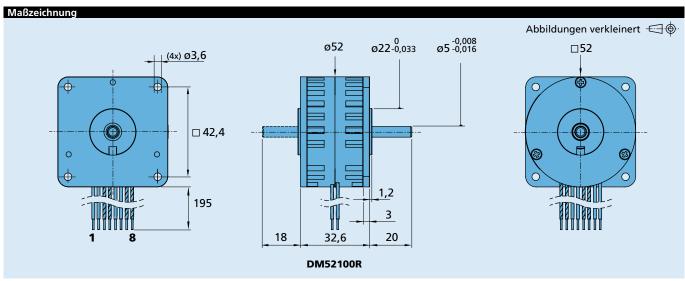


Schrittmotoren

180 mNm


Zwei Phasen, mit Scheibenmagnet, 100 Schritte pro Umdrehung, Mikroschrittmotor

Serie DM52100R


	DM52100R		5300		2000	
Anschluss		Parallel	Seriell	Parallel	Seriell	
Nennstrom pro Phase (1 Phase bestromt)		5,3	2,6	2	1	Α
Booststrom pro Phase (1 Phasen bestromt)		12,2	6,1	4,6	2,3	Α
Phasenwiderstand		0,35	1,4	2,2	8,8	Ω
Induktivität pro Phase (1kHz)		0,7	2,8	5	20	mH
Haltemoment (1 Phase bestromt)		180	180	180	180	mNm
Haltemoment (Booststrom)		400	400	400	400	mNm
Stromloses Haltemoment, typ.		10	10	10	10	mNm
Amplitude der Gegen–EMK		2,15	4,3	5,65	11,4	V/k step/
Elektrische Zeitkonstante	2					ms
Rotorträgheitsmoment	9,4·10 ⁻⁷					kgm²
Vollschritt-Winkel	3,6					٥
Absolute Schrittwinkelgenauigkeit	±6					%
Winkelbeschleunigung, max.	425·10 ³					rad/s²
Drehzahl bis	5 000					min-1
Resonanzfrequenz (bei Nennstrom)	70					Hz
Wärmewiderstände	7,3					K/W
Thermische Zeitkonstante	18					min
Betriebstemperaturbereich	-20 +50					°C
Wicklungstemperatur, max.	+130					°C
Wellenlagerung	Kugellager					
	(Lagerung Code:	2R)				
Wellenbelastung, max. zulässig:	(Lager ang Coach	,				
– für Wellendurchmesser	5					mm
– radial bei 5 000 min ⁻¹ (5 mm vom Lager)	54					N
– axial bei 5 000 min ⁻¹	12					N
– axial im Stillstand	167					N
Wellenspiel:						
– radial	0,015					mm
– axial	0					
Gehäusematerial	Polyphenylensulfi	d (PPS)				
Masse	250					g
Magnetmaterial	NdFeB					J

Steuerung Einstellungen

Kurve gemessen mit einem Lastträgheitsmoment 3,96·10⁻⁵ kgm² auf dem DM52100R2R530000 Motor mit einem Technosoft IDS640-Controller im sin/cos Steuermodus, 256 Mikroschritte für Vollschritt und einen Spitzenstrom von 5,3A.

Optionen und Anschlussinformationen Beispiel zur Produktkennzeichnung: DM52100R2R530000										
Frontseitiger	Motortyp rontseitiger Zweites Frontseitiger Abtrieb btrieb Wellenende Beschreibung		Anschlüsse Nr. Farbe Phase							
00	01	Glatte Welle L=20mm	1	braun	A+					
	02	Glatte Welle L=20mm, für Encoder	2 3 4 5 6	orange braun-weiß orange-weiß rot gelb	A+ A- A- B+ B+					
			7	rot-weiß gelb-weiß	B- B-					
				gelb weib						

Kombinatorik								
Präzisionsgetriebe / Spindeln	Encoder	Steuerungen	Leitungen / Zubehör					
	IE3-1024							