Career Press Suppliers
Career Press Suppliers

Choose Region for personal contact


Veléz Sarsfield 201640 Martinez

Buenos Aires

Tel.: +54 (9) 11 5993 8719

Horne Technologies cc

PO Box 536

Betty's Bay, 7141

Tel.: +27 (0)76 563 2084

Building of FAULHABER MINIMOTOR SA, Croglio, Switzerland


Zona Artigianale 8, Madonna del Piano

6980 Croglio

Tel.: +41 (0)91 611 31 00

Building of FAULHABER MICROMO LLC, Wien, Austria


14881 Evergreen Avenue

Clearwater, FL 33762-3008

Tel.: +1 (727) 572 0131

NRC Engineering & Precision Drives Co., Ltd.

17F., No. 890, Jingguo Rd., Luzhu Dist.

Taoyuan City 33858, Taiwan, R.O.C.

Tel.: +886 (0) 3-316-1838

EDEL Teknoloji Sistemleri Sanayi ve Ticaret Ltd.Şti

Folkart TowersAdalet Mah.Manas Blv. No:47B/2809

35530 Bayraklı/İzmir

Tel.: + 90 232 215 08 91

Building of FAULHABER Asia Pacific Pte Ltd., Singapore

FAULHABER Asia Pacific Pte Ltd.

Blk 67 Ubi Road 1, #06-07 Oxley Bizhub

Singapore 408730

Tel.: +65 6562 8270

Compotech Provider AP

Gustavslundsvägen 145, 4 tr

167 51 Bromma

Tel.: +46 (0) 8 441 58 00


56 (bldg. 32), Shosse Enthusiastov

111123 Moscow

Tel.: +7 495 2214 052

Building of FAULHABER Polska sp. z o.o., Poznan, Poland

FAULHABER Polska sp. z o.o.

Ul. Górki 7

60-204 Poznan

Tel.: +48 61 278 72 53

FAULHABER Malaysia Sdn Bhd

1A-2-01 & 02 · One Precinct · Lengkok Mayang Pasir

11950 Bayan Baru · Penang · Malaysia

Tel.: +60 4 619 2570

Swiss Amiet Co., Ltd.

W-903, SK V1 Center, 11 Dangsan-ro 41-g

Yeongdeungpo-gu,07217, Seoul

Tel.: +82 (0) 2 783 4774

Shinkoh Electronics Co., Ltd.

Tokyo Sales Office, Motor Sales Division8F, REID-C OMORI building, 6-20-8

Minami-oi, Shinagawa-ku, Tokyo 140-0013

Tel.: +81 (0) 3 6404 1003

Building of FAULHABER Italia S.r.l., Lomazzo, Italy

FAULHABER Italia S.r.l.

Via Cavour 2

22074 Lomazzo CO

Tel.: +39 0236714708

Inteltek Automation JV

S.No. 100/5, Ambegaon

Pune - 411046

Tel.: +91 (0) 20 39392150

Lewenstein Technologies Ltd.

1 Ha'arava St. Givat Shmuel

5400804 Israel

Tel.: +972 3 9780 800

Electro Mechanical Systems Ltd.

Eros House, Calleva Industrial Park, Aldermaston

Reading, RG7 8LN

Tel.: +44 (0) 118 9817 391

Building of FAULHABER France SAS, Montigny-le-Bretonneux, France


Parc d’activités du Pas du Lac2, Rue Michaël Faraday

78180 Montigny-le-Bretonneux

Tel.: +33 (0) 1 30 80 45 00


Passeig Ferrocarrils Catalans 178

Cornellà de Llobregat 08940 (Barcelona)

Tel.: +34 93 422 70 33


Suokalliontie 9

01740 Vantaa

Tel.: +358 (0) 9 5259 230

Routech s.r.o.

Dr. Milady Horákové 185/66

460 06 Liberec

Tel.: +420 489 202 971

Compower ApS

Marielundvej 29

2730 Herlev

Tel.: +45 (0) 44 92 66 20

Marte Científica e Instrumentação Industrial Ltda

Av Fco Andrade Ribeiro 430

37540-000 Santa Rita do Sapucai, MG

Tel.: +55 (11) 3411 4500

Building of FAULHABER Drive System Technology (Taicang) Co., Ltd.,Taicang, China

FAULHABER Drive System Technology (Taicang) Co., Ltd.

Eastern Block, Incubator Building, No. 6 Beijing Road West

Taicang 215400, Jiangsu Province

Tel.: +86 (0) 512 5337 2626

Building of FAULHABER Benelux B.V., Eindhoven, Netherlands


High Tech Campus 9

5656 AE Eindhoven

Tel.: +31 (0) 40 85155-40

Building of FAULHABER Austria GmbH, Wien, Austria


Modecenterstraße 22/C89

1030 Wien

Tel.: +43 1 7963149-0

ERNTEC Pty. Ltd.

15 Koornang Road

Scoresby, VIC 3179

Tel.: +61 3 9756 4000

Fax: +61 3 9753 4000

Building of Dr. Fritz Faulhaber GmbH & Co. KG, Schönaich, Germany



Faulhaberstraße 1

71101 Schönaich

Tel.: +49 7031 638 0

Fax: +49 7031 638 100

We are sorry

FAULHABER is currently not represented in the selected country.

Please contact us with your request at

Jan-Christopher Mohr

Area Sales Manager

Tel.: +49 (7031) 638 158

Michael Schütte

Area Sales Manager

Tel.: +49 (7031) 638 456

Daniel Brönnimann

Area Sales Manager

Tel.: +41 (0) 79 570 0814

Rolf Leitner

Regional Sales Manager

Tel.: +41 (0) 79 422 3348

Rafael Steinemann

Area Sales Manager

Tel.: +41 (0) 79 932 1645

DC-Motors from FAULHABER drive high efficiency portable infusion pump

Most people may not realize that the human body can be as much as 85% water. Small wonder, then, that one of the first lines of treatment for trauma patients like wounded soldiers is controlled fluid replacement, often at high volumes. The problem is that conventional infusion pumps are typically designed to deliver small amounts of fluids at high accuracies 100 mL over the course of an hour or more, for example, which is far from sufficient for trauma treatment. When the U.S. Army went looking for a compact, portable field unit that could run at rates of 100 mL/min, Infusion Dynamics (now Zoll Medical Corp.) turned to motion control and efficient, high torque DC-motors from FAULHABER to provide the answer.

The design consists of a modular pump with a disposable cartridge that sits on top. The unit operates on six AAA batteries for a total of 9 V. The Army’s goal was for a change of batteries to infuse one patient; the finished device is so efficient it can operate for eight to ten hours at full speed, infusing multiple patients on a single battery pack.

DC-Motors from FAULHABER drive high efficiency portable infusion pump
A yoke rocked by a rotating eccentric cam compresses first one tube, than the other to pump fluids. (Courtesy of Zoll Medical)
DC-Motors from FAULHABER drive high efficiency portable infusion pump
The Power Infuser consists of a base pump unit topped by a disposable cartridge. (Courtesy of Zoll Medical)

Efficiency First

The mechanical part of the pump unit consists of an anodized aluminum frame topped by a yoke with two flanges on the underside in a fork configuration. The disposable cartridge, which sits atop the yoke, essentially consists of two parallel, transparent plastic tubes, each with passive check valves on opposite ends causing unidirectional flow as the tubes are compressed. The fork on the underside of the yoke straddles a rotating eccentric cam that forces it to rock back and forth. As it does, a ridge on top of each side compresses the tube of the cartridge above it. The action expels the fluid from the cartridge tube into the patient’s IV line.

To maximize battery life, the design team focused on efficiency first. Each time one of the tubes is compressed, it stores potential energy. Once the liquid is expelled, the potential energy converts to kinetic energy as the expansion of the empty tube boosts the action of rocking the yoke to the other side so that it can begin to compress the other tube. “It’s incredibly efficient,” says Michael Loughnane, now president of Instech Labs and one of the designers of the unit. “If you were to just use one tube, you’d get a certain flow at a certain power. If you add the second tube, the power requirements only go up slightly but the flow doubles. We use this balanced pumping action to get the best efficiency out of the mechanism.”

The pump was designed so that the motion never completely closes off a tube. Such occlusion, as is found in peristaltic pumps, consumes energy, both for compression and for controlling backflow. Built into the body of the cartridge is a separate air elimination filter consisting of one hydrophilic membrane and one hydrophobic membrane. Air is forced out through the hydrophobic membrane. This portion of the cartridge ensures no air bubbles will enter the IV line. “You could actually drop the bag on the ground and it pumps all the air out and then finish off pumping the fluid in the bag,” says co-designer Kenneth Cook.

To power the yoke, the group needed a DC gear motor that could provide enough torque to compress the tubes, but in a package small enough for the pump’s size constraints. Above all, it had to be efficient. “Using a mathematical model, we homed in on the best gear ratio, the best speed and then picked the appropriate gearmotor and gear ratios to meet those criteria,” says Loughnane. They chose a 13-mm-diameter, 31-mm-long servo motor from FAULHABER, fitted with a 15-mm-diameter gearhead for a 76:1 reduction ratio. “We went to some other companies,” he adds. “We found that of the motors we tested, FAULHABER’s were the most efficient.”

They built their initial prototypes with 9 V motors but discovered they got more efficient performance by under driving a 12 V model. “The current drain on the motor is usually better if you’re not working at the high end,” Loughnane says. “It’s a more efficient design than getting one that's made to work at 9 V and running it at the full 9 V.” The group made one modification to the gearmotor, adding an external bearing to the distal end of the shaft to provide additional support.

DC-Motors from FAULHABER drive high efficiency portable infusion pump
The motion control-powered infusion pump (black box strapped to patients wirst) can replace fluids at 100 mL/minimum in trauma victims.

Keeping Control

With the mechanical design finished, the next problem was control. The device could not have an electronic signature, which ruled out the use of a conventional microprocessor. Instead, the group opted for discrete logic and analog control based on back-EMF feedback. The selector switch that sets the pump rate establishes a voltage that the amplified back-EMF of the motor must match. The analog circuit varies the drive signal to the motor depending on the results, providing closed-loop speed control.

“We depend upon the back EMF constant to determine how fast the motor is going,” says Loughnane. “One of the things that we like about the FAULHABER motors is that the back EMF constants have been well within the 10% that they claim; they’re actually much better than that. If it varied from motor to motor that would be a problem, but that number has been very good and consistent.”

In a move to further improve efficiency, the speed controller only drives the motor in a forward direction. It does not attempt to hold the speed of the motor steady throughout the cycle. Instead, if the motor is going a bit faster after peak compression as a result of stored potential energy, the circuitry allows it to free wheel, electrically speaking.

A side benefit of the control approach is that the current required to drive the motor is directly related to the degree of occlusion in the tubes. If the current rises beyond a certain threshold because the pump is plugged, the unit will automatically shut off. Similarly, if the IV tube is hooked up to an undersized needle that exerts backflow pressure, the unit will stop. According to Loughnane, 18-gauge needles are the optimum for trauma patients; the automatic stop can prevent an error.

The design also includes a pair of stainless steel pins that form a conductivity meter in the fluid path. In the event that air fills the tube due to an elimination filter failure, resistance goes up and the pump stops. The medic must intervene to clear any air and restart the pump. The meter can also detect whether the right fluid is being used - a saline solution or other solution with a physiological salt concentration.

1331 ... SR
Precious Metal Commutation
Data sheet (PDF)
Key Features
8 ... 22 mm
15.8 ... 32.2 mm
Nominal voltage:
3 ... 36 V
Speed up to:
17000 min⁻¹
Torque up to:
10 mNm
Continuous output up to:
8.5 W
Product details

Recommended contents

Here you will find external YouTube contents for the article. Click to watch.

I consent to being shown external contents. I am aware that personal data may be shared with third-party platforms. For more information, refer to our privacy policy.

After filling out the form you will get access to our entire webinar library for a year.

* Required field

Many thanks for your interest in our product range!

You will shortly receive an email with a confirmation link. Click the link to complete the registration process. You will then be able to access the requested content.

Please contact us if you have any questions.